

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

AALBORG SOLID CEMENT AALBORG PORTLAND A/S, CEMENTIR HOLDING

Programme: The
International EPD®
System,
www.environder.com

Programme operator: **EPD** nternational AB

EPD registrat numbe S-P-098 Publication date: 14.07.2023

Revision date: 27.05.2024

until: 27.05.2029

Geographical scope: **Europe**

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com.

GENERAL INFORMATION

MANUFACTURER INFORMATION

Manufacturer	Aalborg Portland A/S, Cementir Holding
Address	Aalborg Portland A/S, Rørdalsvej 44, 9220 Aalborg, Denmark
Contact details	cement@aalborgportland.dk
Website	www.aalborgportland.dk

PRODUCT IDENTIFICATION

Product name	AALBORG SOLID cement
Additional label(s)	CEM II/A-V 42,5 N (EA)
Product number / reference	0615-CPR-9806
Place(s) of production	Aalborg, Denmark
CPC code	3744

The International EPD System

EPDs within the same product category but from different programmes may not be comparable.

EPD INFORMATION

The EPD owner has the sole ownership, liability, and responsibility for the EPD. Construction products EPDs may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context

EPD program operator	The International EPD System
EPD standards	This EPD is in accordance with EN 15804+A2 and ISO 14025 standards.
Product category rules	The CEN standard EN 15804 serves as the core PCR. In addition, the Int'l EPD System PCR 2019:14 Construction products, version 1.3.3 (01.03.2024) is used. c-PCR 001 Cement & building lime
EPD author	Stefan Emil Danielsson, Research and Quality Center, Cementir Holding S.p.A Aalborg, Denmark
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☑ External verification
Verification date	27.05.2024
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD number	S-P-09883
ECO Platform nr.	
Publishing date	14.07.2023
Revision date	27.05.2024
EPD valid until	27.05.2029

PRODUCT INFORMATION

PRODUCT DESCRIPTION

AALBORG SOLID cement is a grey Portland-Fly Ash cement, CEM II/A-V 42,5 N (EA), reaching a 28-day strength of above 42,5 MPa. It is characterized by a low heat development and an extra low alkali content. SOLID cement is produced by co-milling cement clinker with EN 450-1 flyash and gypsum. SOLID cement can be used for concrete in all exposure classes according to national regulations on concrete standards. The cement is delivered bulk and in 1500 kg big-bags.

PRODUCT APPLICATION

AALBORG SOLID cement can be used in concrete for all purposes and in all environmental classes in Denmark. AALBORG SOLID cement is especially recommended for:

- Ready mixed concrete
- Infrastructure projects (bridges, tunnels, harbors, etc.)
- Concrete with low heat development
- Concrete with long durability

TECHNICAL SPECIFICATIONS AND PHYSICAL PROPERTIES OF THE PRODUCT

Product sheet for the cement can be retrieved here: https://www.aalborgportland.dk/downloads/ydeevnedeklarationer/

Further information can be found at www.aalborgportland.dk

PRODUCT STANDARDS

The AALBORG SOLID cement is manufactured according to the requirements in the European standard <u>DS/EN 197-1.</u>

PRODUCT RAW MATERIAL COMPOSITION

Product and Packaging Material	Weight, kg	Post- consumer %	Renewable %	Country Region of origin
Clinker	800 - 940	0	0	Denmark, Europe
Fly ash	60 - 200			Denmark, Europe
Gypsum	0 - 50	0	0	Denmark

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	<0,1	Europe, World
Minerals	76	Denmark
Fossil materials	24	Denmark, Europe
Bio-based materials	0	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1% (1000 ppm).

PRODUCT LIFE-CYCLE

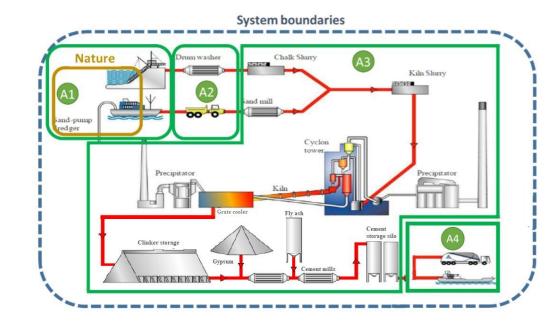
MANUFACTURING AND PACKAGING (A1-A3)

Portland cement is made by heating, in a cement kiln, a mixture of raw materials (mainly limestone or chalk) to a calcining temperature of above 600°C and then a fusion temperature, which is about 1450°C to sinter the materials into clinker. To achieve the desired setting qualities in the finished product, a quantity of gypsum and coal fly ash is added to the clinker and the mixture is finely ground to form the finished cement powder.

TRANSPORT AND INSTALLATION (A4-A5)

Only distribution to end customers is considered (A4). Transportation happens in Denmark, partly by truck regionally, and partly by ship from silo to silo from where it is distributed by truck to local customers. The transport impact is partitioned according to flow volume and distances and displayed in the table at the "Scenario documentation" of this EPD.

PRODUCT USE AND MAINTENANCE (B1-B7)


As cement is an intermediate product, no other lifecycle phases are relevant to cover. Air, soil and water impacts during the use phase have not been studied. As such they are marked as "Modules Not Relevant".

Environmental Product Declaration created with One Click LCA

PRODUCT END OF LIFE (C1-C4, D)

The end-of-life modules (C1-C4, and D) are omitted as the material fulfils the exemption criteria based on EN 15804+A2.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

LIFE-CYCLE ASSESSMENT INFORMATION

Period for data	2023
Declared unit	1000 kg AALBORG SOLID cement
Mass per declared unit	1000 kg

BIOGENIC CARBON CONTENT

The product does not have biogenic carbon content.

SYSTEM BOUNDARY

This EPD covers cradle-to-gate with options scope with following modules; A1 (Raw material supply), A2 (Transport) and A3 (Manufacturing). As cement is an intermediate product, no other lifecycle phases are relevant to cover. Only A4 is also included as per the recommendation in EN 15804+A2.

Modules not declared = ND.

Proc	luct stag	e		mbly ige			U	se stag	ge			E	nd of li	fe stag	Resource recovery stage			
A1	A2	А3	A4	A5	B1	В2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D	D	D
х	х	х	х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Global	Global	DK	DK															
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
>90% s	pecific d	ata																

CUT-OFF CRITERIA

All major raw materials and essential energy flows are included. Sum of cut-off is less than 0,1% of input mass. The 1% cut-off rule does not apply for hazardous materials and substances: all flows with environmental significance are included. All solid waste emissions, including those that weight less than 1% of the sum of the masses of the inputs, are reported in the end-results.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. In this study no allocations are done.

According to the "polluter pays principle" upstream burdens from production of secondary fuels and materials are excluded. However, the burden from inbound transport and fossil emission from incineration of waste fuels are voluntarily added to the GWP category in A3.

The data quality is generally high as internal process modelling is based on 3rd party verified data from the Manufacturer. Background processes such as transportation and electricity have been modelled using Ecoinvent v.3.8 LCI database, all with less than 2 years old data.

AVERAGES AND VARIABILITY

For this EPD, simple averaging has been applied for inputs and output over the 1-year data period.

Furthermore, minor inputs such as internal transport and waste have been averaged over the entire clinker production of Aalborg Portland.

ENVIRONMENTAL IMPACT DATA

Note: ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930 are presented in ANNEX.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Climate change – total	kg CO _{2-eq}	6,62E+02	5,95E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – fossil	kg CO _{2-eq}	6,62E+02	5,95E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – biogenic	kg CO _{2-eq}	2,48E-02	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – LULUC	kg CO _{2-eq}	4,04E-02	2,90E-03	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Ozone depletion	kg CFC11-eq	6,69E-06	1,36E-06	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Acidification	mol H+-eq	1,66E+00	5,98E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, aquatic freshwater	kg PO _{4-eq}	1,74E-02	3,69E-05	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, aquatic marine	kg N _{-eq}	2,44E-01	1,49E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, terrestrial	mol N _{-eq}	2,85E+00	1,66E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Photochemical ozone formation	kg NMVOC _{-eq}	7,61E-01	4,74E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion, minerals &	kg Sb _{-eq}	1,81E-03	1,30E-05	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion of fossil resources	MJ	2,62E+03	8,70E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Water use	m³-eq depr.	3,99E+01	3,81E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

EN 15804+A2 disclaimer for Abiotic depletion and Water use indicators and all optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

The Climate change parameter (A1-A3) for the cement content includes 89,0 kg CO_{2-eq} from the combustion of fossil part of waste fuels during clinker production. In accordance with the "polluter pays" principle /EN 15804/, the emissions will be added to the production system that caused the waste. In this EPD, the fossil CO_2 contribution from waste fuels has <u>not</u> been deducted. The net total Climate change potential (without waste fuel contribution) is 574 kg CO_{2-eq} per ton cement.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Particulate matter	Incidence	1,53E-05	5,77E-07	MND	MND	MND	MND	MND								
Ionizing radiation, human health	kBq U235 _{-eq}	5,96E+00	4,39E-01	MND	MND	MND	MND	MND								
Eco-toxicity (freshwater)	CTU-eq	8,46E+03	6,94E+01	MND	MND	MND	MND	MND								
Human toxicity, cancer effects	CTUh	7,61E-08	2,51E-09	MND	MND	MND	MND	MND								
Human toxicity, non-cancer effects	CTUh	1,83E-06	6,87E-08	MND	MND	MND	MND	MND								
Land use related impacts/soil quality	-	8,39E+02	8,34E+01	MND	MND	MND	MND	MND								

EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

USE OF NATURAL RESOURCES

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Renewable PER used as energy	MJ	1,23E+03	1,04E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Renewable PER used as materials	MJ	2,29E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of renewable PER	MJ	1,23E+03	1,04E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-renew. PER used as energy	MJ	2,98E+03	8,71E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-renew. PER used as materials	MJ	1,67E+03	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of non-renewable PER	MJ	4,65E+03	8,71E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of secondary materials	kg	2,80E+02	2,94E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable secondary fuels	MJ	1,27E+03	1,97E-04	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renew. secondary fuels	MJ	1,04E+03	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of net fresh water	m³	1,26E+00	1,05E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

PER abbreviation stands for primary energy resources

END OF LIFE - WASTE

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	1,53E+01	1,03E-01	MND	MND	MND	MND	MND								
Non-hazardous waste	kg	6,94E+02	1,52E+00	MND	MND	MND	MND	MND								
Radioactive waste	kg	3,37E-03	6,03E-04	MND	MND	MND	MND	MND								

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for reuse	kg	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for recycling	kg	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for energy recovery	kg	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Exported energy	MJ	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP-GHG	kg CO _{2-eq}	6,62E+02	5,95E+00	MND	MND	MND	MND	MND								

8) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). This indicator is almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013. The fossil emission of 89,0 kg CO_{2eq} from waste fuels is included in A3.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Data for the Danish West
	electricity mix 2023 have been
	applied using a combination of
	Ecoinvent v.3.8 datasets.
	Source: Danish Ministry for
	Energy (Energinet)
Electricity CO _{2-eq} / kWh	0,105
District heating data source and quality	n/a
District heating CO _{2-e} q / kWh	n/a

Transport scenario documentation

Scenario parameter	Value			
Transport, freight, lorry >32 tonnes, EURO 5,	0,093			
kg CO _{2-eq} / t-km				
Transport, freight, sea, bulk carrier for dry goods,	0,0065			
kg CO _{2-eq} / t-km				
A4 average transport CO _{2-eq} emissions,				
kg CO _{2-eq} / t-km				
A4 average transport distance, km	275			
Transport capacity utilization, %	36%			
Bulk density of transported products, kg/m ³	-			
Volume capacity utilization factor for nested package products, %	100			

End of life scenario documentation

Scenario parameter	Value
Collection process – kg collected separately	n/a
Collection process – kg collected with mixed waste	n/a
Recovery process – kg for re-use	n/a
Recovery process – kg for recycling	n/a
Recovery process – kg for energy recovery	n/a
Disposal (total) – kg for final deposition	n/a
Scenario assumptions e.g. transportation	n/a

BIBLIOGRAPHY

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations. Principles and procedures.

ISO 14040:2006 Environmental management. Life cycle assessment. Principles and frameworks.

ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines.

EN 15804:2012+A2:2019 Sustainability in construction works — Environmental product declarations — Core rules for the product category of construction products.

IES EPD System PCR 2019:14 Construction products, version 1.3.3 (2024-03-01) is used. c-PCR 001 Cement & building lime

Ecoinvent database v3.8 and One Click LCA database.

Danish Ministry for Energy (Energinet):

https://energinet.dk/media/itxkh2lc/19 07249-23-forel%C3%B8bigedeklarationer-for-2023.pdf

DIFFERENCES VERSUS PREVIOUS VERSIONS

This version is on based on 2023 data and latest IES PCR 1.3.3 - replacing the previous version published in July 2023, with 2022 as reference production year. Total GWP is reduced 4% from previously 689 to 662 kg CO_{2eq}/ton mainly due to increased share of biogenic fuels.

ABOUT THE MANUFACTURER

Aalborg Portland is world leader in white cement and the only producer of cement in Denmark. The plant - located directly by the seaway in Aalborg – is producing premium grey and white cement from the five kilns currently in operation. The main raw materials, chalk and sand are extracted onsite of sourced locally. The annual cement production is 2,4 million tons are distributed to domestic and regional customers and supported by Aalborg Portland silo terminals.

Since 2004 Aalborg Portland is owned by Cementir Group – a multinational group with operations in 18 countries. Cementir Group have set ambitious targets to reduce CO2 emissions and defined a 10-year Roadmap with sustainability projects, including introduction of products with strong performance and reduced of carbon footprint such as FUTURECEM®, Aalborg SOLID and Aalborg White D-Carb®

EPD AUTHOR AND CONTRIBUTORS

Manufacturer	Aalborg Portland, Cementir Holding
EPD author	Stefan Emil Danielsson, R&D, Cementir Holding S.p.A Aalborg, Denmark
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD program operator	The International EPD System
Background data	This EPD is based on Ecoinvent v.3.8 (cut-off) and One Click LCA databases.
LCA software	
LCA SOftware	The LCA and EPD have been created using One Click LCA Pre-Verified EPD Generator for Cementitious Products

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with EN 15804, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The background report (project report) for this EPD

Why does verification transparency matter? Read more online.

VERIFICATION OVERVIEW

Following independent third party has verified this specific EPD:

EPD verification information	Answer
Independent EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD verification started on	23.05.2024
EPD verification completed on	27.05.2024
Supply-chain specific data %	95%
Approver of the EPD verifier	The International EPD System

Author & tool verification	Answer
EPD author	Stefan Emil Danielsson
EPD author training completion	10.09.2020
EPD Generator module	Cement, cement mixes & building lime
Independent software verifier	Ugo Pretato, Studio Fieschi & soci Srl.
Software verification date	11.05.2021

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of

- the data collected and used in the LCA calculations,
- the way the LCA-based calculations have been carried out,
- the presentation of environmental data in the EPD, and
- other additional environmental information, as present

with respect to the procedural and methodological requirements in ISO 14025:2010 and EN 15804:2012+A2:2019.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Silvia Vilčeková, Silcert, s.r.o.

VERIFICATION AND REGISTRATION (ENVIRONDEC)

CEN standard EN 15804 serves a	s the core Product Category Rules (PCR)
Product Category Rules	PCR 2019:14 Construction products, version 1.3.3 c-PCR 001 Cement & building lime, UN CPC 3744
PCR review was conducted by:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.
Life Cycle Assessment (LCA)	
LCA accountability:	Stefan Emil Danielsson, Research and Quality Center, Cementir Holding S.p.A, Aalborg, Denmark
Third-party verification	
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:	☐ EPD verification by accredited certification body ☐ EPD verification by EPD Process Certification ☑ EPD verification by individual verifier Third party verifier Silvia Vilčeková, Silcert, s.r.o. Approved by: The International EPD® System.
Procedure for follow-up during EPD validity involves third party verifier	□ yes ☑ no

EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden,

E-Mail: info@environdec.com

ANNEX

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	B7	C1	C2	C3	C4	D
Global warming potential	kg CO _{2-eq}	6,58E+02	5,89E+00	MND												
Depletion of stratospheric ozone	kg CFC-11-	5,51E-06	1,08E-06	MND												
Acidification	kg SO _{2-eq}	1,39E+00	4,78E-02	MND												
Eutrophication	kg PO _{4-eq}	5,38E-01	6,70E-03	MND												
Photochemical ozone formation	kg C ₂ H _{4-eq}	5,65E-02	1,49E-03	MND												
Abiotic depletion of non- fossil res.	kg Sb _{-eq}	3,58E-04	1,27E-05	MND												
Abiotic depletion of fossil resources	MJ	2,61E+03	8,70E+01	MND												

The GWP parameter (A1-A3) for the cement content includes 89,0 kg CO_{2-eq.} from the combustion of fossil part of waste fuels during clinker production. In accordance with the "polluter pays" principle /EN 15804/, the emissions will be added to the production system that caused the waste. In this EPD, the fossil CO₂ contribution from waste fuels has not been deducted. The net total GWP (without waste fuel contribution) is 569 kg CO_{2-eq} per ton cement.

